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Abstract-A model is developed for predicting the influence of the containing walls on heat transfer 
processes in stagnant beds of solid particles. The model describes the effect of the walls on the mean 
voidage of the bed and on the mean effective thermal conductivity of the bed. The theoretical predictions 

are compared with available experimental data. 

INTRODUCTION 

STAGNANT fixed beds of solid particles are used in 
many areas of chemical reactor technology. In order 
to control the various chemical reactions the heat 
fluxes and the temperatures in the bed must be 
carefully controlled. Thus the modelling of the various 
heat transfer processes in these situations has received 
considerable attention [ 11. 

In many situations it is possible to model the bed 
macroscopically by assuming that the bed consists of 
a homogeneous (or pseudohomogeneous) emulsion 
of solid particles and stagnant interstitial fluid. It is 
then assumed that the emulsion has constant and 
uniform voidage and that effective thermal con- 
ductivities can be assigned to it. Effective thermal 
conductivities of such systems have been extensively 
investigated, mainly by Kunii and Smith [2] and by 
Bauer and Schliinder [3]. 

However, the assumption ofconstant voidage emul- 
sion does not hold in the vicinity of the walls of the 
bed. The presence of the walls disturbs the local 
packing and increases the voidage there. The influence 
of the increased voidage on the heat transfer properties 
of the bed depends on the thermal properties of the 
solid particles and the interstitial fluid. Usually this 
introduces an additional resistance to heat transfer, 
which may have an important influence on the overall 
heat transfer characteristics of the bed. This has 
been long recognized and, e.g. Yagi and Kunii [4] 
considered the additional surface thermal resistance 
for the case of packed beds and Baskakov and co- 
workers [5,6] considered the resistance for the case 
of fluidized beds. 

It should be noted ‘that even though the influence 
of the wall on particle packing may propagate some 
distance from the wall (and thus for narrow beds may 
be experienced by the whole bed), the effect of the 
wall is mainly limited to a distance of about one 
particle diameter from the wall [7,8]. Thus it seems 
reasonable to assume that the variation of the voidage 
is limited to the distance of one particle diameter 
from the wall and that then the voidage remains 

constant and undisturbed by the presence of the wall. 
Such variation of the voidage was used directly to 
develop a model of heat transfer in gas fluid&d beds 
and the results of the model are in good agreement 
with the available experimental data [9, lo]. 

It is the purpose of this work to investigate the 
influence of the walls on steady-state conduction 
heat transfer in stagnant beds of solid particles by 
considering directly the effect of the walls on the 
variation of the voidage. First, the influence of the 
walls on the mean bed voidage is considered and the 
relationship between the mean voidage of the bed and 
the voidage of the undisturbed emulsion phase (i.e. 
undisturbed by the presence of the containing walls) 
is derived. Secondly, the influence of the walls on the 
mean effective thermal conductivity of the bed is 
analysed and the relationship between the mean 
effective thermal conductivity of the bed and the 
effective thermal conductivity of the undisturbed 
emulsion phase is derived. Finally, the theoretical 
results are compared with the available experimental 
evidence (mainly with the recent data of Melanson 
and Dixon Cl]). 

EFFECT OF THE WALLS ON MEAN BED 
VOIDAGE 

One-di~ensianal {slub) bed 
Consider a slab bed, such as that shown in Fig. 1. 

Since the width of the bed w is much smaller than 
either the height or the depth of the bed, it is assumed 
that the voidage of the emulsion varies only along 
the width of the bed. Let E(x) be the voidage of the 
emulsion phase anywhere in the bed. The mean 
voidage of the bed B is then given as 

e(x) dn. (1) 

937 
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NOMENCLATURE 

d 

e 

hw 

k, 

kr 
k, 
k(r) 

k(x) 

I; 

4 

kc 

T 

TE 

mean particle diameter 
particle emissivity 
apparent wall heat transfer 

coefficient 
thermal conductivity of undisturbed 
emulsion phase 
thermal conductivity of the fluid 
thermal conductivity of the particles 
thermal conductivity of emulsion 
at r 
thermal conductivity of emulsion 
at x 
mean effective thermal conductivity 

of the bed 
lateral heat flux 
radius 
contact resistance 
temperature 
emulsion phase temperature 

T apparent wall temperature (see 
Fig. 1) 

AT temperature difference, T2 - Tl 
W bed width 
X coordinate. 

Greek symbols 

&E voidage of undisturbed emulsion 
phase 

E(r) voidage of emulsion at r 

s(x) voidage of emulsion at x 
E mean voidage of the bed. 

Subscripts 
i inside wall 
0 outside wall 
1 wall 1 (see Fig. 1) 

2 wall 2 (see Fig. 1). 

Next it is assumed (as discussed above) that the 
voidage s(x) varies only up to the distance of one 
particle diameter from the containing wall and then 
that it remains constant and equal to the voidage of 

the undisturbed emulsion phase sE. 
Hence equation (1) can be re-written as 

2 d 
E=&E+- 

CS w 0 
E(X) dx - cEd 1 (2) 

w 
where d is the mean particle diameter. 

It is shown in ref. [9] that in fluidized beds the 
voidage variation in the vicinity of a flat wall can be 

approximated as 

FIG. 1. A diagram of one-dimensional (slab) bed. 

s(x)= 1 -3(1 -a&-;($]. (3) 

A more complex and detailed expression could be 
used for the case of stagnant beds, but equation (3) 

is assumed adequate for the approximate analysis 
presented in this work. 

Equation (3) can then be substituted in equation 
(2) to obtain 

&++$(I -Es). 

It can be seen from equation (4) that the mean 
voidage of the bed is always greater than the voidage 
of the undisturbed emulsion phase, but that it 
approaches Ed as the ratio w/d increases. 

Annular bed 
Consider an annular bed, such as that shown in 

Fig. 2, whose height is much greater than the outer 
radius of the bed r,. The mean voidage of the bed is 
then given as 

r&(r) dr. 

As discussed in ref. [lo] the curvature of the 
containing surface may have some influence on the 
variation of the voidage in its vicinity. However, the 
expressions are quite (and unnecessarily) complex and 
their use is not warranted in the approximate analysis 
discussed in this work. Hence it is assumed that the 
voidage variation in the vicinity of either concave or 
convex surfaces is the same as the voidage variation 
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FIG. 2. A diagram of an annular bed. 

in the vicinity of a flat surface, i.e. 

E(r) = E(X), withx=r-ri or x=r, 

It can then be shown that 

E = &E + &it - %). 

r. (6) 

(7) 

Comparison with experimental data 
Equations (4) and (7) can be best tested for relatively 

large ratios d/w or d/(r, - ri) when the size of the solid 
particles is comparable to the ‘width’ of the bed. 
However, it should be noted that because of the 
various assumptions used in deriving equations (4) 
and (7), these equations are valid only for w/d > 2 and 
(rO - ri)/d > 2, respectively. Obviously the theoretical 
results can be extrapolated towards w/d = 1 and (rO 
- ri)/d = 1, but any agreement with the experimental 

data in that range must be regarded as fortuitous. 
Three sets of experimental data for the mean 

voidage Z of beds of solid particles (i.e. particles 
without hollow spaces) have been examined: (i) experi- 
mental results of Melanson and Dixon [l] for annular 
beds of solid spheres and solid cylinders, (ii) experi- 
mental results of Yagi and Kunii [4] for annular beds 
of solid spheres and (iii) experimental results of Ofuchi 
and Kunii [l 11 for slab beds of solid spheres. 

First, equation (7) was used to calculate the voidage 
of the undistur~d emulsion phase se from the experi- 
mental data of Melanson and Dixon [l]. The mean 
value of .sr was calculated as 0.346 with a standard 
deviation of 0.009. Secondly, equation (7) was also 
used to calculate Ed from the experimental data of 
Yagi and Kunii [4]. The mean value of sr was 
calculated as 0.342 with a standard deviation of 0.021. 
Thirdly, equation (4) was used to calculate sr from 
the experimental data of Ofuchi and Kunii [l 11. The 
mean value of sE was calculated as 0.345 with a 
standard deviation of 0.028. 

Finally, the mean voidage E was plotted as either 
the function of the ratio d/w (for slab beds) or the 
ratio difr, - ri) (for annular beds) in Fig. 3. Figure 3 
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FIG. 3. A plot of the mean bed voidage .? against the ratio 
d/w (for slab beds) or d/(r, - rJ (for annular beds). 

also shows the theoretical results of equations (4) and 
(7) for two different values of the voidage of the 
undistur~d emulsion phase, eE = 0.34 and 0.35. 

The comparison of the model with the ex~rimental 
results thus shows that the voidage of the undisturbed 
emuision phase is about 0.35 and that this is a good 
approximation even for beds with comparatively high 
values of particle diameter/bed width ratios. This 
value of the voidage of the undisturbed emulsion 
phase, i.e. Ed = 0.35, will be used in the subsequent 
analysis. 

EFFECTS OF THE WALLS ON BED THERMAL 
PROPERTIES 

One-dimensional (slab) bed 
As shown in Fig. 1, the two walls of the bed are 

held at constant temperatures Ti and T,, respectively. 
The governing equation for steady-state heat transfer 
by conduction is 

& 
[ I k(x)fg = 0 

where k(x) is the thermal conductivity of the emulsion 
anywhere in the bed. 
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First, we obtain the exact solution by taking into The relationship between the various heat transfer 
account the variation of k(x) with x. The lateral heat parameters can be obtained by comparing equations 
flux across the bed is obtained from equation (8) as (ll), (12) and (14) as 

q=AT (9) 

where 

AT=T,--T,. (10) 

Next it is assumed that the variation of the thermal 
conductivity of the emulsion phase is due only to the 
variation of the voidage of the emulsion phase. Since, 
as discussed above, the voidage is assumed to vary 
only within the distance of one particle diameter from 
the containing walls, the variation of the thermal 
conductivity is also limited to this distance and the 
thermal conductivity then remains constant and equal 
to the thermal conductivity of undisturbed emulsion 
phase. Using the above assumption equation (9) can 
be re-written as 

(11) 

Secondly, we assume that the bed can be associated 
with constant mean effective thermal conductivity k 
Subject to the constant surface temperature boundary 
condition, equation (8) can be solved as 

Finally, we use the third model which idealizes the 
situation by assuming that the additional resistance 
to heat transfer in the vicinity of the heat transfer 
surface is concentrated on the heat transfer surface 
itself by providing additional contact resistance, and 
that the thermal conductivity anywhere in the bed 
(even in the vicinity of the heat transfer surface) is 
equal to the thermal conductivity of undisturbed 
emulsion phase k,. The boundary conditions for this 
case thus become 

for x = 0 
Tl - T 
- = -k dT 

R”, Edx 
(13) 

T- T2 
forx=w -= -k dT 

RE2 Edx 

and the solution of equation (8) can be obtained as 

q=AT (14) 

(16) 

Annular bed 
Using arguments similar to those above, the im- 

portant heat transfer parameters for annular beds can 
be related as follows: 

Heat transfer parameters 
The various heat transfer parameters are related 

by equations (15)-( 17) for slab beds and by equations 
(18)-(20) for annular beds. Equations (15) and (18) 
relate the mean bed effective thermal conductivity It 
with the effective thermal conductivity of undisturbed 
emulsion phase kE. It can be shown that the ratio 
k& is always greater than unity but that it 
approaches unity as the size of the bed increases 
compared with the particle diameter d. 

It is not the object of this paper to investigate and 
predict k,, since that, as discussed above, has been 
done extensively by other investigators [2,3]. They 
give methods for relating k, to the various parameters 
of the emulsion phase, such as kp, kF, cE, d, e and TE. 
The first three parameters determine the contribution 
to heat transfer by conduction, whereas the second 
three parameters determine the contribution to heat 
transfer by radiation. 

In order to calculate the heat transfer parameters 
of equations (lS)-(20) the variation of thermal con- 
ductivity near the heat transfer surface must be 
known. This, as discussed above, depends on the 
variation of the emulsion phase voidage there. In this 
work the voidage variation given by equation (3) is 
used. The major reason for using this approach is 
that it was used successfully to describe heat transfer 
in gas fluidized beds [9]. The voidage variation of 
equation (3) is then used with the methods of Kunii 
and Smith [23 and Bauer and Schliinder [3] to 
calculate the variation of the thermal conductivity in 
the vicinity of the heat transfer surface. 
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COMPARISON WITH EXPERIMENTAL DATA 

Initial observations 
As shown by the previous experimental work [ 1,4] 

the only thermal parameter which can be determined 
directly is the mean effective thermal conductivity of 
the bed, L This is determined from the heat flux and 
the mean temperature gradient over the whole bed 
(e.g. from (T2 - T,)/w in the case of a slab bed). The 
thermal conductivity of the undisturbed emulsion 
phase k, is obtained from the heat flux and the 
smoothed temperature gradient in the core of the bed, 
since it is assumed that the emulsion phase there is 
undisturbed by the containing walls. 

The contact resistances are then determined from 
the heat flux and the difference between the wall 
temperatures and the temperatures which would be 
obtained on the walls if the temperature gradient in 
the core of the bed were extrapolated to the walls (e.g. 
from temperature differences T; - T, and T, - T; in 
Fig. 1). This aspect is discussed more fully in refs. 

c1,41. 
Hence the mean bed thermal conductivity E is 

measured with the highest experimental accuracy, 
the experimental accuracy of k, is lower and the 
experimental accuracy of the contact resistance R’ is 
lower still. 

The experimental accuracy ofmeasuring the contact 
resistance depends mainly on the accuracy with which 
we can determine the relevant temperature difference 
(such as T; - Tl in Fig. 1). Since, for example, the 
temperature T; is determined by extrapolating the 
core temperature gradient, the accuracy of the temper- 
ature difference T; - T, depends directly on the 
magnitude of this temperature difference. Thus higher 
credence must be given to those experimental results 
which are based on higher values of the appropriate 
temperature difference. 

It can be shown that, based on the above principle, 
the experimental data for the contact resistance on 
the outside walls of annular beds are much less reliable 
than those on the inside walls. This can be confirmed, 
e.g. by examining the consistency of the experimental 
data in ref. Cl]. Furthermore, it can be also shown 
that the accuracy of the experimental data for the 
contact resistance decreases as the ratios k,R;/w, 
kER;/w or k,RClr, decrease. 

It should be noted that the theoretical results which 
are to be compared with the available experimental 
data must be calculated consistently. The techniques 
of Kunii and Smith [Z] and of Bauer and Schliinder 
[3] can be used to calculate the thermal conductivity 
of the emulsion phase with constant and uniform 
voidage. Since the local voidage of the emulsion phase 
is also assigned a unique point value, it may be argued 
that the local value of the voidage of the emulsion 
phase can be used to calculate the local value of the 
thermal conductivity of the emulsion phase. Thus the 
only values of thermal conductivity which can be 
calculated directly are either the local thermal con- 

ductivity (which depends on the local voidage of the 
emulsion phase) or the thermal conductivity of the 
undisturbed emulsion phase (which depends on the 
uniform voidage of the undisturbed emulsion phase). 

Hence, since the voidage of the emulsion phase 
varies over the bed (and is thus not uniform) it seems 
inappropriate to use the mean voidage of the bed to 
predict the mean thermal conductivity of the bed. 
The mean thermal conductivity of the bed can only 
be predicted indirectly from the core thermal con- 
ductivity by using, e.g. equations (15) and (18). Thus, 
there appears to be some inconsistency in the work 
of Melanson and Dixon [l] who used the mean bed 
voidage to calculate the mean bed thermal conductiv- 
ity. 

In order to use the two techniques [2,3] for 
calculating the thermal conductivity of the emulsion 
phase the following bed parameters must be defined: 
the particle diameter d, the voidage of the un- 
disturbed emulsion phase cE, particle emissivity e and 
the temperature of the bed. 

The mean particle diameter is defined as a diameter 
of a sphere of the same volume as the volume of the 
particle based on its outside dimensions (i.e. any 
hollow spaces within the particle are neglected). 

As indicated by Fig. 3 the voidage of the undis- 
turbed emulsion phase of solid particles (i.e. particles 
without hollow spaces) is about 0.35, and this is the 
value used throughout this work. This value is also 
used for hollow particles since it is assumed that the 
internal voidage is of secondary importance because 
the heat conduction path round the hollow spaces is 
unbroken. Thus in applying the correlation of Kunii 
and Smith [2] &r = 0.35 was used, but in applying 
the corelation of Bauer and Schliinder [3] the required 
correction for the particle shape was taken into 
account as well. 

Since the particle emissivities were not known they 
were inferred from the work of Melanson and Dixon 
[l] and judged for the remaining experimental work 
[4,11]. The value of e = 0.4 was used for all the 
particles in this work with the exception of aluminium 
particles, for which e = 0.1 was used, and nylon 
and ceramic particles, for which e = 0.5 was used. 
Furthermore, since in all the reported experimental 
work the temperature of the bed generally increased 
from about 30°C to about lOO”C, it is assumed that 
the bed is at a uniform temperature of 340K. 

Finally, since it is assumed that the bed temperature 
is uniform the variations of thermal conductivity of 
the emulsion phase in the vicinity of both heat transfer 
surfaces in a given bed are identical. Thus, for a one- 
dimensional bed equations (16) and (17) show that 
R; = R;. Hence equation (15) can be simplified as 

k d k,R; 
+l+2w-;i-. 
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FIG. 4. A comparison of the experimental results of Melan- 
son and Dixon [l] for ka with the prediction of Kunii and 

Smith [2], using cE = 0.35. 
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FIG. 5. A comparison of the experimental results of Melan- 
son and Dixon [I] for k, with the predictions of Bauer and 

Schliinder [3], using Ed = 0.35. 

Thermal conductivity of undisturbed emulsion phase 
As pointed out above, thermai conductivity of the 

emulsion phase has been extensively investigated by 
other authors. In this section experimental results of 
Melanson and Dixon [l] for the thermal conductivity 
of the undisturbed emulsion phase kE will be compared 
with the formulas of refs. [2,3] using the voidage 
of the undistur~d emulsion phase, =ss = 0.35. As 
discussed above this is the voidage appropriate for 
calculating kE. Figure 4 compares the experimental 
results with the formula of Kunii and Smith [2] and 
Fig. 5 with the formula of Bauer and Schliinder [3]. 
The two figures indicate that both methods appear 
to be unde~redicting the experimental data but that 
the method of Kunii and Smith predicts the results 
more consistently. Thus the approach of Kunii and 
Smith [2] appears to be preferable. This agrees with 
the conclusion of Melanson and Dixon [l]. 

I I1111111 

0.08 0.1 0.2 0.4 I.0 2.0 

E - equations (18 -20) with kE of [2] 

FIG. 6. A comparison of the experimental results of Melan- 
son and Dixon [1] for II with the predictions of equations 
(18)~20) and kc based on the work of Kunii and Smith [Z]. 
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i; - equations (18-20) with kE of [3] 

FIG. 7. A comparison of the experimental results of Melan- 
son and Dixon [I] for IT with the predictions of equations 
(18)-(20) and kE based on the work of Batter and Schliinder 

L-31. 

Mean efiective thermal conductivity of the bed 
The experimental results of Melanson and Dixon 

[l] for II in annular beds are compared with the 
theoretical results of equations (18)-(20) with k, based 
on the work of Kunii and Smith [2] in Fig. 6 and 
with k, based on the work of Bauer and Schliinder 
[3] in Fig. 7. Since the theoretical results are based 
on the available correlations of the thermal conduct- 
ivity of the undisturbed emulsion phase ks, which 
themselves do not compare particularly well with the 
experimental data of ref. Cl], it is difficult to draw 
any conclusions from the above comparisons. 

More insight may be obtained by examining the 
characteristics of the ratio kE/f;. The experimental 
results of Melanson and Dixon [l] for the ratio kE/E 
are compared with the theoretical results of equations 
(18)-(20) with kE based on ref. [2] in Fig. 8 and with 
kE based on ref. [3] in Fig. 9. The two figures indicate 
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FIG. 8. A comparison of the experimental results of Melanson and Dixon [l] for k&with the predictions 
of equations (18)-(20) and k, based on the work of Kunii and Smith [Z]. 

that, as in the previous section, the theoretical results 
based on the work of Kunii and Smith [2] give more 
consistent agreement with the experimental data. 

Contact resistance 
As discussed above the contact resistance is 

obtained from the heat flux and the temperature 
difference T; - T, or T2 - T;. Since the measured 
temperature differences are generally small, large 
scatter in the data can be observed Cl, 4, 111. This 
must be kept in mind when comparing experimental 
results with the theoretical predictions. Furthermore, 
since the formula of Kunii and Smith [Z] is preferable 
for predicting k,, only their correlations are used in 
this section. 

As pointed out above the experimental data for the 
contact resistance on the outside walls of annular 
beds are much less reliable than those on the inside 
walls. Thus for annular beds only those data of refs. 
[1,4] which refer to the inside wall are compared 
with the theoretical prediction of equation (19). The 
experimental results for k,RT/ri are compared with 
the theoretical predictions in Fig. 10. It should be 
noted that, as discussed above, the experimental data 
for small values of k,Rf/ri are not very reliable. Re- 
moving those data for which k,R;/ri < 0.4 improves 
the consistency of the comparison between experi- 
mental data and theoretical predictions. Figure 10 is 
replotted in Fig. 11 with k,RT/d instead of kERC/ri, 
with those experimental data for which 
k,RC/ri < 0.4 removed. 

Experimental results of ref. [ll] for kER;/d in a 
one-dimensional bed are compared with the theoret- 
ical predictions of equation (16) in Fig. 12. (It should 
be noted that only those experimental data which 
were based on the temperature difference T; - T1 
> 2.X are included in the comparison.) 

DISCUSSION 

As pointed out above, in order to determine the 
thermal conductivity of the undisturbed emulsion 
phase k, the voidage of the undisturbed emulsion 
phase Ed must be used in the appropriate formulas. 
As indicated in Figs. 4 and 5 the two approaches for 
correlating k, [2,3] (and especially the more con- 
sistent method of Kunii and Smith [Z]) underpredict 
k E. 

It is unlikely that the reason for this discrepancy 
is a systematic experimental error in the work of 
Melanson and Dixon [l], since (i) their experimental 
work was well controlled and (ii) the systematic error 
would have to be relatively high. Thus it is more 
likely that it is the correlating formulas which under- 
predict the experimental results. One parameter used 

in the correlating formulas which could be immedi- 
ately questioned is the voidage Ed, which was not 
determined directly but inferred (as discussed above). 
However, in order to reconcile theoretical predictions 
with the experimental data an emulsion voidage much 
lower than cE = 0.35 would have to be used. Since 
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kE/k - equations (18-20) with kE of [3] 

FIG. 9. A comparison of the experimental results of Melanson and Dixon [l] for k&with the predictions 
of equations (18)-(20) and k, based on the work of Bauer and Schliinder [3]. 
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A - equation (19) with kE of [2] 
kEY 

FIG. 10. A comparison of the experimental results of Melanson and Dixon [l] and Yagi and Kunii [4] 
for k,RC/r, with the theoretical predictions of equation (19) and kE based on the work of Kunii and Smith 

PI. 

the discussion in the above sections and Fig. 3 seem predictions of E, but as Fig. 8 indicates the ratio k,/E 

to show quite conclusively that the voidage .sa is is predicted quite consistently albeit with relatively 

about 0.35, it seems unlikely that the voidage is much large scatter. Since the theoretical predictions of K are 

lower than 0.35. Hence it remains unclear why the based on the correlation formulas for k, the reason 

correlating formulas underpredict the experimental for the underprediction of k is probably the same as 

results for k,. the reason for the underprediction of k,, and thus 

Similar trends can be observed for the theoretical remains unclear. However, the fact that the ratio kE//i 
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0 data of [l] 
o data of [4] 

I I 1111111 

d - - equation (19) with kE of [2] 
kER: 

FIG. 11. A comparison of the experimental results of Melan- 
son and Dixon [l] and Yagi and Kunii [4] for k,RC/d with 
the theoretical predictions of equation (19) and k, based on 

the work of Kunii and Smith [2]. 
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kER; 
- - equation (16) with k E of [2] 

FIG. 12. A comparison of the experimental results of Ofuchi 
and Kunii [l l]- for kER;/d with the theoretical predictions 
of equation (16) and k, based on the work of Kunii and 

Smith [2]. 

is predicted without large systematic errors gives 
confidence in the methods developed in this work. 

In this work the term contact resistance R’ is used 
to describe the additional resistance to heat transfer 
near the heat transfer surfaces. This is related to its 
inverse h, = l/R’, which is variously described as 
apparent wall heat transfer coefficient [l], apparent 
wall-film coefficient of heat transfer [ 1 l] or wall-film 
coefficient of heat transfer [4]. As can be observed 
[l, 4, 111 the experimental results for h, in stagnant 
beds are subject to a large scatter. Thus it is not 
surprising that Figs. lo-12 also indicate a large 
scatter, but the figures show reasonable agreement 
between the theoretical predictions and the experi- 
mental results for contact resistance R’. 

Kunii and co-workers [ll, 121 have developed a 
different model for h,, based on two different values 
of the effective thermal conductivity of the emulsion 
phase: (i) thermal conductivity of the undisturbed 
emulsion phase k, and (ii) thermal conductivity of the 

10.0- 
steady-state conduction 

e - transient conduction [ 131 
a - 
e 5.0- 
ii _ 
.; 
a - 

E 
c, 2.0- 

4s. 
1.0 - 

0.5 I I I111111 I II 

1.0 2.0 5.0 10.0 20.0 50.0 

kE/kF 

RG. 13. A plot of k,R’/d for flat heat transfer surfaces 
against k,/k,: a comparison of steady-state and transient 

conduction. 

emulsion phase in the vicinity of the heat transfer 
surface. The latter conductivity is based on a rather 
artificial concept of the average voidage of the emul- 
sion phase in the vicinity of the heat transfer surface, 

from the heat transfer surface to a distance of d/2. 
This voidage is assumed to be 0.40 and .sE is assumed 
to be 0.34, which leads to the following equation for 
the mean voidage of the bed 

E = 0.34 + 0.06;. (22) 

Equation (22) is also plotted in Fig. 3, which 
shows that the predictions of equation (22) diverge 
appreciably (and systematically) from the experi- 
mental data. Thus, even though the model of Kunii 
and co-workers [11,12] for h, (or RC) gives as good 
a prediction as the model developed in this work, the 
present model which is based on more consistent 
assumptions is probably preferable. 

If the bed particles are small or if the bed temper- 
ature is low the radiative component of heat transfer 
can be neglected, and the method of Kunni and Smith 
[Z] correlates the thermal k, with just k,, kF and Ed. 
It can then be shown that the contact resistance 
is related to the bed properties by the following 
equation: 

kERC 
- = function 

d 
of 

{ 
2, +, surface geometry . (23) 

F I 

For flat heat transfer surfaces the contact resistance 
was calculated from equation (16). The method of 
Kunii and Smith [Z] was used and it was assumed 
that sE = 0.35. The theoretical results are presented 
in Fig. 13. This figure also shows contact resistances 
applicable to unsteady conductive heat transfer, which 
were obtained for various emulsion phase residence 
times in a study of heat transfer in gas fluidized beds 
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FIG. 14. The effect of the curvature of the heat transfer surface on contact resistance. 

[13]. Since in the majority of practical applications 
4 < k&r < 20, Fig. 13 shows that the contact resist- 
ance obtained for steady-state conduction heat trans- 
fer can also be used to describe transient conduction 
heat transfer in packed or fluidized beds. 

The effect of the curvature of the heat transfer 
surface on the contact resistance R’ is demonstrated 
in Fig. 14, which shows the plot of dfkERf and 
d/kERF, vs rild and rJd, respectively, for two different 
beds: (i) nylon spheres in air and (ii) aluminium 
spheres in air. The theoretical results were obtained 
from equations (19) and (20) using the method of 
Kunii and Smith [2] to calculate kE and k(r). 

It should be noted that the present model is 
probably not valid for the cases when ri/d approaches 
zero and r,/d approaches unity. Nevertheless, the 
mode1 indicates that the curvature of the heat transfer 
surface has only a small influence on the values of 
the contact resistance. For example, for rJd > 0.5 and 
r-,/d > 1.5 the contact resistances are within 10% of 
the contact resistance on a flat heat transfer surface. 
Hence it appears that the influence of the curvature 
of the heat transfer surface on the contact resistance 
can be neglected and that the values of contact 
resistance obtained on a flat heat transfer surface can 
be used instead. 

The theoretical results of Fig. 14 are re-plotted on 
Fig. 15 as riJkERf and r,lk,R’, vs rJd and r,/d, 
respectively. It can be observed from Fig. 15 that 
whereas ri/kERF decreases as rild decreases, r,/k,R~ 
reaches its minimum and then starts increasing with 
decreasing r,/d. Melanson and Dixon [l] plotted 
their experimental data in this form and concluded 
that for r,/d < 2 there is a strong upturn in r,/k,R’, 
as r,fd decreases. They supported this observation by 
arguing that for r-,/d = 0.5 there is only solid in the 
bed and thus that the contact resistance would tend 
to zero. This is incorrect since for r-,/d = 0.5 the 
voidage is 0.33. Hence it is difficult to decide whether 
or not there is a strong upturn in r,lkERz as r,Jd 
decreases below 2. It should be pointed out that in 
this region the results are of not much practical 

interest, since for r,/d -c 2 the whole concept of 
constant core properties with surface contact 
resistance breaks down because the wall effects 
will propagate throughout the bed. 

Finally, the heat transfer parameters were related 
in this model on the basis of equivalent heat flux, 
which is of course the dominant parameter in this 
application. Thus the mode1 is only applicable to 
steady-state conduction heat transfer in slab or an- 
nular beds. For other bed geometries or other heat 
transfer processes the model must be derived from 
the first principle, as discussed above. 

CONCLUSIONS 

A mode1 has been developed for predicting the 
influence of the containing walls on steady-state 
conduction heat transfer in stagnant beds of solid 
particles. Two bed geometries were considered: one- 
dimensional (slab) beds and annular beds. 

The effect of the containing walls on the bed voidage 
was considered first, and the variation of the bed 
voidage due to the presence of the containing walls 
was used to relate the various heat transfer para- 
meters, such as the contact resistance, the mean 
effective bed thermal conductivity and the thermal 
conductivity of the emulsion phase in the core of the 
bed. 

The present mode1 is based on the work of Kunii 
and Smith [2] on the thermal conductivity of the 
uniform emulsion phase, since it has been shown that 
their work gives more consistent predictions than the 
work of Bauer and Schliinder [3]. 

The theoretical predictions of the present model 
for the mean voidage of the bed, the mean effective 
thermal conductivity of the bed and the contact 
resistance are shown to be in reasonable agreement 
with available experimental data. 

Acknowledgement-This work is published by permission of 
the Central Electricity Generating Board. 
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CONDUCTION PERMANENTE DANS DES LITS FIXES DE PARTICULES SOLIDES 

R&m-n developpe un modile pour estimer I’influence des parois de I’enceinte sur les m&canismes de 
transfert thermique dans les lits fixes de particules solides. Le modtle d&it I’effet des parois sur la 
conductivitt thermique effective moyenne du lit. Les prtiictions thdoriques sont comparbs avec des 

don&es exp&imentales disponibles. 

STATIONARE WjiRMELEITUNG IN FESTBETTEN AUS FESTKdRPERPARTIKELN 

Zusammenfassung-Zur Vorhersage des Einflusses der BegrenzungswCnde auf den WHrmetransport in 
ruhenden Festbetten mit festen Partikeln wurde ein Model1 entwickelt. Das Model1 beschreibt den EinfluD 
der Wiinde auf die mittlere Porositiit und die mittlere effektive Wlrmeleitfihigkeit des Festbettes. Die 

theoretischen Vorhersagen werden mit verfiigbaren experimentellen Daten verglichen. 

CTAUMOHAPHAR TEIUlOIIPOBOAHOCTb B HEHOABkDKHbIX CJIOIIX TBEPnbIX 
qACTMLI 

AHnoraunn-Pa3pa6oTaHa MoAenb nna pacqera annamia cTenoK Ha npoueccb1 TennonepeHoca a Henon- 
BA)1(HbIX CJtOIlX TBCpAbIX ‘IPCTIIU. Monenb OItHCbIBaeT BARKHHC CTeHOK Ha CpeAHmIO IlOpHCTOCTb H 

CpCAHlO,O 3~~CKTUBHYH) TCN,On,,OBOAHOCTb C.“O% TeopeT&irecxwe p3yAbTaTbI CpaBHHBcWOTCK C HMCEO- 

UlHMUCIl 3KCnCpHMeHTaJIbHbIMH AaHHbIMW. 


